Sonar Equation: The Wave Equation

The Great Wave Hokusai

LO: Recognize physical principles associated with terms in sonar equation.

...the Punchline

If density too high to resolve individual organisms, then: E[energy from volume] = n * energy from an individual $energy from individual = s_{bs} = backscattering cross section$ $energy from volume = s_v = volume backscatter coefficient$

$$E[s_v] = n s_{bs}$$

So...

- measure energy from volume
- assume, measure, or model energy from representative individual
- can calculate density of individuals

Definitions

Wave Number:

Angular Frequency:

$$k = 2\pi/\lambda$$
 (units rad/m)

$$w = 2\pi/T = 2\pi f$$
 (units rad/s)

Pressure (p): force/area (units Pascals = N/m^2 , $1mPa = 10^{-6} Pa$)

$$p(r) = p(r_o) r_o/r$$

Intensity (I): power/area (units W/m²)

$$I \propto p^2$$

$$I(r) = I(r_0) (r_0/r)^2$$

Hugen's Principle

Every point in a wave field acts as a point source

Interference among sources (e.g. ripples in a pond)

Constructive
$$/// + /// = ///$$
Destructive $/// + /// = ///$

Propagating Waves

 $D(x/\lambda) = D_1(x/\lambda - ft)$

Non-dimensional Wave Equation

Make non-dimensional: divide by λ

$$D(x/\lambda) = D_1(x/\lambda - ft)$$

Recall $2\pi/\lambda = k$; $2\pi f = \omega$

$$D(k,x) = D1(kx - \omega t) + x direction$$

$$D(k,x) = D1(kx + \omega t)$$
 -x direction

Harmonic Motion

Force = -kx

F = ma

Therefore: ma = -kx

$$m\frac{d^2x}{dt^2} = -kx$$

$$0 = -kx - m\frac{d^2x}{dt^2}$$

Divide by -m:

$$0 = \frac{d^2x}{dt^2} + \frac{kx}{m}$$

Harmonic Motion

x made up of 2 parts:

$$x_1 = A\cos\left(\sqrt{\frac{k}{m}}t\right) x_2 = B\sin\left(\sqrt{\frac{k}{m}}t\right)$$

So:
$$x = A\cos\left(\sqrt{\frac{k}{m}}t\right) + B\sin\left(\sqrt{\frac{k}{m}}t\right)$$
 since $\omega = \sqrt{\frac{k}{m}}$

since
$$\omega = \sqrt{\frac{k}{m}}$$

$$k = N/kg$$

$$= (kg/s^2)/kg$$

$$= s^{-2}$$

k Units

$$x = A\cos(\omega t) + B\sin(\omega t)$$

Square root =
$$s^{-1}$$

= rad/s
= ω

Sinusoidal form with magnitude $C = \sqrt{A^2 + B^2}$ and phase $\alpha = \tan^{-1}(\frac{B}{A})$

and phase
$$\alpha = \tan^{-1}\left(\frac{B}{A}\right)$$

$$x = C\cos(\omega t - \alpha)$$

A,B,C complex constants

Alternate Solution for Harmonic Motion

x made up of 2 parts:

$$x_1 = D e^{i\omega t} \quad x_2 = E e^{-i\omega t}$$

So:
$$x = De^{i\omega t} + Ee^{-i\omega t}$$

Wave Equation for Acoustics

$$\nabla^2 p = \frac{\delta^2 p}{\delta^2 t^2} * \frac{1}{c^2}$$
 For plane waves in 1 direction:
$$\nabla^2 = \frac{\delta^2}{\delta x^2}$$

LaPlacian operator

$$\frac{\delta^2 p}{\delta x^2} = \frac{\delta^2 p}{\delta^2 t^2} * \frac{1}{c^2}$$

Plane Wave Incident Solution

$$p(x,t) = A e^{i(kx - \omega t)} + B e^{i(kx + \omega t)}$$
forward reverse

Forward Traveling Planar Wave:

$$p(x,t) = C \cos(kx-\omega t)$$
, where C is reference pressure (p_o)

Alternate form:

$$p = \frac{p_o r_o}{r} e^{i(kr - \omega t)}$$

$$r = x = range$$

Planar Incident Pressure

$$p_{inc} = p_o r_o e^{\frac{i(kr_t - \omega t)}{r_t}} = \frac{p_o r_o}{r_t} e^{i(kr - \omega t)}$$

Spherical Scattering

LaPlacian
$$\nabla^2 = \frac{\delta^2}{\delta r^2} + \frac{2}{r} \frac{\delta}{\delta r}$$

Wave Equation
$$\frac{\delta^2 p}{\delta r^2} + \frac{2}{r} \frac{\delta p}{\delta r} = \frac{1}{c^2} \frac{\delta^2 p}{\delta t^2}$$
 r is distance from source center

Solution
$$p = \frac{A}{r}e^{i(kr-\omega t)} = \frac{p_o r_o}{r}e^{i(kr-\omega t)}$$
 amplitude frequency

Transducer Directivity

$$D(\theta) = \frac{\sin\left(\frac{kL}{2}\sin\theta\right)}{\frac{k}{L}\sin\theta} = \operatorname{sinc}\left(\frac{kL}{2}\sin\theta\right) \quad \text{Directivity Index}$$

$$D_{i} = 10\log(D) = 10\log(I_{o}/\overline{I})$$

$$D_{i} = 10\log(D) = 10\log(I_{o}/\overline{I})$$

sinc = (sin(x)/x)

where:

 I_o = radiated intensity at acoustic axis

I = mean intensity over all directions

Calculate from transducer

 $D_i = 10 \log(4\pi a/\lambda)$ where a = active transducer area \(\frac{1}{2} \)

Calculate from beam angles

$$D_i = 10\log(2.5/\sin(\beta_1/2)\sin(\beta_2/2))$$

where β 's = beam width at -3dB points

Don't Forget Transmission Losses

Spherical Spreading

$$\Delta p \alpha 1/r$$
 $I \propto p^2$

Absorption

$$p_2 = p_1 10^{-\alpha r/20}$$

 $\alpha = 1/r_0 10 \log_{10}(p_1^2/p_2^2)$

$$I_2 = I_1 10^{-\alpha r/10}$$

 $\alpha = 1/r_0 10 \log_{10}(I_1/I_2)$

 r_0 = unit distance

Putting Components Together

Pressure

$$p(r) = p(r_0) r_0/r 10^{-\alpha(r-r_0/20)}$$

Intensity

$$I(r) = I(r_0) (r_0/r)^2 10^{-\alpha(r-r_0/10)}$$

Sonar Equation for Pressure

$$p(r) = p(r_0) r_0/r 10^{-\alpha(r-r_0/20)}$$

Divide by reference pressure p_o

$$p(r)/p_o = p(r_o)/p_o r_o/r 10^{-\alpha(r-r_o/20)}$$

Take 20 log₁₀ of both sides:

$$20 \log_{10}(p(r)/p_o) = 20 \log_{10}(p(r_o)/p_o) + 20 \log_{10}(r_o/r) - \alpha(r-r_o)$$

Sonar Equation for Pressure

$$20 \log_{10}(p(r)/p_o) = 20 \log_{10}(p(r_o)/p_o) - 20 \log_{10}(r_o/r) - \alpha(r-r_o)$$

$$SPL = SL - TL - TL$$

Sound Pressure Level

Echo Level

Source Level

Transmission Losses

(one way)

Scattering from an Object

li

Incident sound on target

 I_r

Intensity of reflected sound at 1 meter

$$TS = 10\log_{10}\left(\frac{I_r}{I_i}\right)$$

Point or Spherical Scattering

Scattered Field

$$p_{scat} = \frac{p_o r_o}{r_t} e^{i(kr_t - \omega t)} \times \frac{e^{ikr_s}}{r_s} \times f$$

amplitude frequency

incident field

reflected field

f = complex scattering amplitude
(a.k.a. complex scattering length)
reflectivity, target size, orientation,
geometry of transmit & receive

Acoustic Impedance

Scattering is caused by an Acoustic Impedance mismatch

Reflection (1 direction)

Scattering (all directions)

LARGE objects (e.g. breakwater)

$$R = p_r/p_i$$

What is acoustic impedance (Z)? $Z = \rho c$

$$g = \rho_2/\rho_1$$

density

$$h = c_2/c_1$$

sound speed

Echoes: Acoustic Impedance Mismatch

Reflection Coefficient

proportion of sound reflected at an interface

R = reflected

T = transmit

fb = fish body

sb = swim bladder

$$R_{fb,sb} = \frac{g_{fb,sb}h_{fb,sb} - 1}{g_{fb,sb}h_{fb,sb} + 1}$$

Reflectivity Examples

Lead in water

$$g = 11.35$$

$$h = 1.49$$

$$R = 14/16 \cong 1$$

Perfect reflector

Air – water interface

$$g = 0.0012$$

$$h = 0.22$$

$$R = 0-1/0+1=-1$$

Pressure release surface

Artic krill (*Euphasia superba*)

$$g = 1.0357$$

$$h = 1.0279$$

$$R = 0.06/2.06 \cong 0.03$$

Atlantic cod (Gadus morhua)

Body

$$g = 1.039$$

$$R = 0.045$$

$$g = 0.0012$$

$$h = 0.232$$

$$R = 0.045$$
 $R = -0.99$

Backscatter Definition

f = complex scattering amplitude (a.k.a. complex scattering length)

- if f is big then target scatters lots of sound
- backscatter is most common geometry for a transducer

 $\sigma_{\rm bs}$ – backscattering cross-sectional area (units m²)

TS- target strength (units dB re 1 μ Pa)

$$\sigma_{bs} = f_{bs} \times f_{bs}^{*} = \left| f_{bs} \right|^2 \ _{\ast \, \text{complex conjugate}}$$

$$TS = 10\log_{10}(|f_{bs}|^2) = 10\log_{10}(\sigma_{bs})$$

Some Final Definitions

EL = echo level =
$$10\log_{10} \left(\frac{|p_r|^2}{(1\mu Pa)^2} \right)$$

SL = source level =
$$10\log_{10} \left(\frac{p_i^2 r_i^2}{(1\mu Pa)^2 (1m)^2} \right)$$

TL = transmission loss =
$$10\log_{10}\left(\frac{r_{\text{target}}^2}{(1m)^2}\right)$$
 assumes no absorption

TS = target strength =
$$10\log_{10}\left(\frac{\sigma_{bs}}{(1m)^2}\right)$$

Two Way Scattering Equation

$$|p_{scat}|^2 = (p_o r_o)^2 \times \frac{1}{r_{target}} \times \frac{1}{r_{source}} \times \sigma_{bs}$$

$$EL = SL - TL_{to target} + TL_{to source} + TS$$

Rearrange:

$$TS = EL - SL + 2 TL$$
 (anything missing?)

Sonar Equation Schematic

Active vs Passive Systems

$$SPL = SL - TL$$

Passive

energy received = energy transmitted * fraction not absorbed * fraction not
spread

$$I_r = I_o \left(\frac{r_o}{r}\right)^2 10^{-\alpha \left(\frac{r-r_o}{10}\right)}$$
 one-way system source transmission loss

Active

$$SPL_{rec} = SL - 2TL + TS$$

two-way system

+ noise (Σ thermal, electrical, anthropogenic)

Active vs Passive Applications

Passive

- determine how far away we can hear animals
- determine how far away animals can hear us (and corresponding intensity level)
- determine range of animal communication
- census populations
- monitor behavior

Active

- determine how much power needed to detect animal
- determine range of predator detecting prey
- census and size populations
- map distributions of animals

Dolphin Sound Reception

